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Abstract 

We consider the Dirac operator D of a Lorentzian spin manifold of even dimension n > 4. We 
prove that the square D 2 of the Dirac operator on plane wave manifolds and the shifted operator D 2 - 
K on Lorentzian space forms of constant sectional curvature K are of Huygens type. Furthermore, 
we study the Huygens property for coupled Dirac operators on four-dimensional Lorentzian spin 
manifolds. 
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1. Introduct ion 

It is a familiar phenomenon that waves propagate quite different in two and three dimen- 

sions. When a pebble falls into water at a certain point xo, circular waves around xo are 

formed. A given point near xo will be hit by an initial ripple and later by residual waves. 

Three dimensionally, the situation is quite different. If we produce a sound localized at the 

neighbourhood of a point xo then someone near xo will hear the sound during a certain time 

interval but no longer. There are no residual waves like those present on the water surface. 

The mathematical reason for this different behaviour is a special property of the funda- 

mental solution of the wave operator I'-] m of the ~m in dimension m = 3. Whereas in general 

the forward fundamental solution of t3m with respect to the point o ~ R m + l  is supported in 
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the future cone J+(o)  = {(x, t) 6 ~m x ~ [ Ilxll ~ t} the forward fundamental solution in 

dimension m = 3 and each other odd dimension m > 3 is supported even in the light cone 

C+(o) = {(x, t) c ~m x IR I Ilxll = t}. This produces a "sharp" wave propagation. Opera- 

tors describing a "sharp" wave propagation such as E33 are called operators of  Huygens type 

or shortly Huygens operators. In 1923, in his Yale Lectures, Hadamard posed the problem of 

finding all normally hyperbolic operators of Huygens type (see [Had23, p.2361). In spite of  

its age this problem is still far from being completely solved. For results of the last 30 years 

and methods developed to treat this problem see [Gfin88,Giin91,Wiin94,BV94,BK96]. 

In this paper we consider the Huygens property for the square of the Dirac operator of a 

Lorentzian spin manifold. 

Dirac operators on four-dimensional analytic Lorentzian spin manifolds were studied by 

Wiinsch. He proved the following result. 

Theorem 1 ([Wiin 78, Corrollary 3.3; Wi.in 79, Proposition 5.6; Wiin80, Proposition 2.1]). 

Let us denote by D : I ' (S )  ~ I ' (S )  the Dirac operator of  a four-dimensional analytic 

l~)rentzian spin manifold (M 4, g) and let f be a smooth ,function on M. I f  the operator 

D 2 - f : I ' (S )  ~ F ( S )  is o f  Huygens type, then the scalar curvature R ~?f (M, g) is 

constant and equals 12f.  

I f  R is constant and non-zero, then D 2 - ~ R is o f  Huygens type if  and only ( f (M 4, g) 
has constant sectional curvature. 

I f  R is identically zero, then D 2 is o f  Huygens type if  and only if  (M 4, g) is conformally 

fiat or a plane wave manifold. 

According to Theorem 1 there are exactly three classes of  four-dimensional analytic 

Lorentzian spin manifolds on which D 2 (or a shift of  it) is of Huygens type: the Lorentzian 

space forms, the plane wave manifolds and the conformally flat manifolds of vanishing 

scalar curvature. 

In this paper we consider Lorentzian spin manifolds (M n, g) of even dimension n _> 4. 

Let us denote by D the Dirac operator of  (M n, g). We prove that the operator D 2 - K is of 

Huygens type if ( M  n , g) has constant sectional curvature K (Theorem 7) and that D 2 is of 

Huygens type if (M", g) is a plane wave manifold (Theorem 10). It would be interesting 

to know whether D 2 on conformally flat manifolds with vanishing scalar curvature in even 

dimension n >_ 6 is of  Huygens type too and to find new classes of  Lorentzian spin manifolds 

of even dimension n > 6 on which D 2 (or a shift of it) is of  Huygens type. 

Finally we consider the square of twisted Dirac operators on four-dimensional manifolds. 

We prove that the Huygens property of  these operators implies that the coupling connection 

is flat and that the manifold belongs to one of  the three above mentioned classes of  Lorentzian 

manifolds (Theorem 11). 

In Section 2 we recall the definition of Huygens operators and describe conditions fi~r 
normally hyperbolic operators to be of  Huygens type. In Section 3 we discuss the Dirac 
operator on Lorentzian space forms and in Section 4 the Dirac operator on plane wave 

manifolds. Section 5 deals with coupled Dirac operators on four-dimensional manifolds. 
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2. Huygens operators 

We first recall the definition of  normally hyperbolic operators and the properties of  their 

fundamental solutions. 

Definition 1. Let M n be a smooth n-dimensional manifold, (E, p,  M) a real or complex 

vector bundle over M. A differential operator P : 1" (E) ~ F(E) of second order on E is 

called normally hyperbolic if there exists a Lorentzian metric such that the principal symbol 

cr(P) of  P is given by a(P)x(~) = -gx(~, ~)ldEx , where x 6 M and ~ 6 TM* \ O. 

Remark .  In local coordinates on M and a local trivialization of  E a normally hyperbolic 

operator can be expressed in the form 

.. 0 2 
P = -  £ g l J ( x ) ~  + £ Ak(x) q- B(x), 

i,j=l k=l  

w h e r e  (gij) is the inverse matrix of  the coefficients of  the Lorentzian metric. 

Let (M n , g) be an n-dimensional oriented Lorentzian manifold and let us denote by P the 

SO(n, l)-principal bundle of  all positive oriented orthonormal frames. A spinor structure 

of (M n, g) is a reduction (Q, f )  of  P with respect to the double covering of  the special 

orthogonal group SO(n, 1) by the spin group Spin(n, 1). A Lorentzian spin manifold is an 

oriented Lorentzian manifold with a fixed spinor structure (Q, f ) .  Let us denote by An, i 

the spinor representation of  Spin(n, 1). The complex vector bundle S :=  Q x Spin(n, 1) An, 1 

associated to the principal bundle Q is called spinor bundle of  the spin manifold (M", g). 
It is of  complex dimension N = 2 In/2]. The Levi-Civita connection of  (M n, g) defines a 

covariant derivative V s in the spinor bundle S given by the formula 

1 ZEkElO)k l (X)sk  "Sl .q g, 

where (si . . . . .  Sn) is a local orthonormal frame, Ej = g(sj, sj) = +1,  oJkt = g(Vsk, sD 
are the connection forms of  the Levi-Civita connection V with respect to (si . . . . .  Sn) and • 

denotes the Clifford multiplication. Then the Dirac operator of  the spin manifold (M n, g) 
is defined as the composition of  the spinor derivative with the Clifford multiplication # 

D" F(S) vs  F(T*M ® S) g= F(TM ® S) ~> F(S). 

In local coordinates D can be expressed by 

Dq9 Z EiSi S = • Vsi ~0. 
i=1 

Using the spinor calculus it is easy to see that the square D 2 of  the Dirac operator is normally 
hyperbolic. (For details see [Bau81 ] or [LM89].) 
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Definition 2. An open subset 12 of  M n is called a geodesically normal domain if it is a 

normal neighbourhood for each of  its points. In particular, for any x, y 6 I-2 there exists 

a u n i q u e g e o d e s i c c  : [0,1] i ~ f 2 w i t h c ( 0 )  = x ,c (1 )  = y. Let~r : £2 x f2 ~ E 

be the quadratic geodesic distance function defined by ~r (x, y) :---- gc(t)(c' (t), c '  ( t ) ) ,  where 
c : [0, 1 ] ~ ~ is the unique geodesic in I2 joining x with y. 

Let S2 C M n be a time oriented geodesically normal domain and let xo be in S2. Then 

,.Tff (x0) : = {x ~ f2 [ the unique geodesic in I2 from x0 to x is causal 

and future oriented} 

is called the future of  x0 E $2 and 

Cn+(xo) • = OJ+n(xo) = {x ~ f2 I the unique geodesic in f-2 from x0 to x 

is light like and future oriented} 

is called the future light cone of  x0 E ~2. Similarly, we define the past j_n  (x0) and the past 

light cone C_ n (x0), where now the geodesic is past oriented. 

Let (E, p, M) be a vector bundle over M, ~2 C M a domain, x 6 ~2 and V a vector 

space. By D' ( f2 ,  E*; V) we denote the space of distributions on E*ls~ with values in V 

Dr(I2, E*; V) :=  {T : F0(J2, E*) ~ VIT  linear and continuous}. 

Each differential operator P on E extends to D' ( I2 ,  E*; V) in the following way. If P* 

denotes the dual operator on E*, defined by 

E r0(E), 

M M 

then for each distribution T 6 D'(S2, E*; V) the distribution P T  is defined by 

(PT ,  u) :=  (T, P ' u ) ,  u E f '0 (~ ,  E*). 

A distribution G 6 D' ( f2 ,  E*; Ex*) is called fundamental solution of P with respect to 
E* E* (f2, x) if P G  = 6 x , where 6x e* is the Dirac distribution of E~  centred at x: 6, (u) :=  

u(x). 
In general there exists no fundamental solution of  a normally hyperbolic operator P with 

respect to (I2, x). One has to restrict oneself to a certain class of  domains S2, the so-called 

causal domains. 

Definition 3. A domain f20 C M is called causal domain if: 
1. S20 is contained in a time and space oriented geodesically normal domain ~2 and 
2. ,J+n (x) N ~7_n (y) is compact (or empty) and contained in S-20 for all x, y 6 ~o.  

Proposition 1 ([Fri75, Theorem 4.4.1 ]). Each Lorentzian manifold can be covered by causal 

domains. 
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Definition 4. A subset A C S20 of a causal domain f20 is called past compact (or future 
compact) if A M f in°  (x) (or A M ff+n°(x)) is compact (or empty) for all x ~ f20. 

Notation. 79~_(S20, E*; Ex*) C 79'(S20, E*; E*) denotes the subset of all distributions with 

past compact support. 79'_ (I20, E*; Ex*) C D~(S20, E*; E*) denotes the subset of all distri- 

butions with future compact support. 

Theorem 2 ([Giin88, Chap. 3.3]). Let P : F ( E) > F ( E) be a normally hyperbolic op- 
erator, let f2o C M be a causal domain and x E $-2o. Then there exists exactly one funda- 
mental solution G n+o (x ) E 79'+ ( £20, E*; E* ) of P with respect to ( £20, x) with past compact 

support (forward fundamental solution) and there exists exactly one fundamental solution 
Gn_°(x) c 79~_(f20, E*; E*) of P with respect to (f2o, x) with future compact support 

(backward fundamental solution). 

The support and singular support of these fundamental solutions satisfy 

~f2 o suppG+ (x) C ffff°(x), ' S2o smgsuppG+ (x) C C~°(x). 

Now we can define the notion of a Huygens operator. 

Definition 5. P is called a Huygens operator or an operator of Huygens type if there exists 

a covering H of M by causal domains such that for each causal domain f20 ~ H and each 
x ~ G0 the forward and backward fundamental solution GS~°(x) of P with respect to 

(120, x) is supported in the light cone C~ ° (x). 

From the structure of the fundamental solutions it is easy to see that a normally hyperbolic 
operator on a manifold of odd dimension or dimension 2 can never be of Huygens type (see 
[Grin88, Chap. 3.3]). 

Analytic properties of a Huygens operator resulting from the special property of its 
fundamental solutions can be found in [Grin88, Chap. 4] We will make use of the so-called 

Hadamard criterion, which says that an operator P is of Huygens type if a certain Hadamard 
coefficients associated to P vanishes. To make this statement more precise, we will now 
recall the definition of the Hadamard coefficients of a normally hyperbolic operator. 

Let V be a covariant derivative on a vector bundle E over a Lorentzian manifold (M, g). 
Let us denote by V T*M®E the covariant derivative defined by the Levi-Civita connection 
of (M, g) and V. The operator 

A v : :  --traceg(V T*M®E o V) 

is called Bochner-Laplace operator defined by V. 

Proposition 2. Let P : F ( E) > F ( E) be a normally hyperbolic operator on E and let 
g be the Lorentzian metric given by the principal symbol of P. Then there exists a uniquely 



H. Baum/Journal of Geometry and Physics 23 (1997) 42-64 47 

determined covariant derivative V P : I ' ( E )  > F ( T * M  ® E) and a homomorphism 

Hp 6 F ( H o m ( E ,  E)) such that 

P :=  A vp + H p .  l) 

(Eq. 1) is called WeitzenbOck formula for  P.) 

For two vector bundles E and F over M n we denote by E [] F the external tensor product 

of  these bundles over M x M: 

E N F  : = p r ~ E ® p r ~ F .  

We often identify the fibre of  E* • E  over a point (x, y) c M x M with the set of ho- 

momorphisms Hom(Ex, Ey). Let ~2 C M be a geodesically normal domain in M and 

let a : ~ x ~ > N be the quadratic geodesic distance function on ~ .  The function 

oi~ : ~ > R is given by ~x(Y) :=  ~(x,  y). The function m E C°C(~ x X2) 

re(x, .) :=  --½Ac~x -- n 

is called divergence measure of $2. By r 6 C°°(~2 x 52) we denote the function 

1 m(x,_y(s))  ds , 
r ( x , y )  : = e x p  ~ s 

0 

where g : [0, 1] ~ ~2 denotes the unique geodesic in ~2 joining x and y. 

Propos i t ion  3. Let P : F ( E) > F ( E ) be a normally hyperbolic operator and let £2 C 

M be a geodesically normal domain. Then there exists a uniquely determined sequence of  

sections Uk c F(X2 x ~ ,  E* NE),  k = O, 1, 2 . . . . .  such that the following differential 

equations and initial conditions are satisfied on ~2 for  all x c ~ : 

VPad ~ Uk(x, ") + (re(x, .) + 2k)Uk(x,  .) = - P ( U k - 1  (x, .)), 

U_I = 0 ,  U 0 ( x , x ) = I d e x .  

Let us denote by 7~(x, y) 6 Hom(Ex,  Ey) the parallel displacement along the geodesic y 

joining x and y in ~ .  Then the sections Uk satisfy 

1 
Uo(x, y) -- - - 7 9 ( x ,  y) 

r(x,  y) 
1 

Uk(x, y) - 2r(x,1 y) af t k - l r ( x ' ~ ' ( t ) ) P ( g ( t ) ' Y ) P ( U k - I ( x ' ' ) ) ( ~ ' ( t ) ) d t "  k _> 1. 

o 

All differentiations refer to the second component. 
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The sections Uk 6 F($2 x ~ ,  E* [] E),  k = 0, 1, 2 . . . . .  are called Hadamard coefficients 

of  P over ~2. Then the Hadamard criterion says: 

Theorem 3 ((Hadamard Criterion)). Let P : F ( E )  > F ( E )  be a normally hyperbolic 

operator over a manifold M o f  even dimension n > 4. Then P is a Huygens operator if 

and only i f  there exists a covering Lt by causal domains such that the Hadamard coefficient 

U~n-2)/2 o f  P satisfies 

U(n-2) /2(x ,  y) = 0 

f o ra l l  1"2o ~ H, x ~ I-2o, y ~ C°°(x) .  

Another method to find Huygens operators is founded on the conformal gauge invariance 

of  the Huygens property. Let M n be a manifold of  even dimension n _> 4 and let E be a vector 

bundle over M n. To each normally hyperbolic operator P : F ( E )  > F ( E )  is assigned a 

sequence Ik (P)  ~ F ( S k ( T * M )  ® Hom(E ,  E)) ,  k = 0, 1, 2 . . . . .  of  symmetric trace free 

conformal gauge invariants of  weight w = 1 - n/2,  the so-called moments of  P of order k 

(see [Giin88, Chap. 6]). If  P is a Huygens operator, then all moments Ik (P) ,  k = 0, 1, 2 . . . . .  

vanish. Moreover, if M and P are analytic, the vanishing of  all moments imply the Huygens 

property for P.  In dimension n = 4 there are explicit  formulas which express the moments 

of order < 4 in terms of  the curvature of  the manifold (M 4, g) and the curvature of  the 

covariant derivative V P associated to P by its Weitzenb6ck formula (see [Giin88, Chap. 7, 

Table II]). Using these formulas for the first three moments one obtains: 

Theorem4.  Let P : F ( E )  ~ F(E)beanormal l yhyperbo l i copera toro fHuygens t ype  

on a four-dimensional manifold M 4. Let g be the Lorentzian metric defined by P, R the 

scalar curvature o f  ( M 4, g), V P the covariant derivative and H p the homomorphism on E 

associated to P by its Weitzenbrck formula. Then the following conditions are satisfied: 

1. The Cotton invariant Cp :=  Hp - 1R  o f  P vanishes. 

2. V P is a Yang-Mills connection:for the curvature F P o f V  P , ~F P = 0 holds. 

3. The Bach tensor 13 o f  (M 4, g) equals a multiple o f  the "energy impulse tensor" o f  FP : 

13 ® ldE : - 5 ( Q 2 ( F  P, F P) - l g ® IIFPII2). 

3. The Dirac operator of Lorentzian space forms 

Let (M n, g) be a Lorentzian spin manifold of  constant sectional curvature K and even 

dimensionn > 4. L e t u s d e n o t e b y  D :  F ( S )  > F ( S )  theDiracopera toro f (Mn,  g ) . In  

this section we will prove that the operator D 2 - K : F ( S )  > F (S) is of  Huygens type. 

The proof  is based on the fact that the spinor bundle over a simply connected semi- 

Riemannian space form can be trivialized by Killing spinors and on the fact that the 

Yamabe operator of  a conformally flat Lorentzian manifold is of  Huygens type (see [Giin88, 
Chap. 6.3]). 
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Definition 6. Let ( M  n , g )  be a Lorentzian spin manifold with spinor bundle S. A spinor 

field ~p 6 F ( S )  is called a Killing spinor to the Killing number ,k 6 C if 

VxS~o = k X .  ~0 

for all vector fields X on M. 

Let us denote by M~ the complete simply connected Lorentzian manifold of  constant 

sectional curvature K. Since M~ is parallelizable, it is orientable and has exactly one spinor 

structure (the trivial spinor structure). Let S be the spinor bundle of M S . 

Proposit ion 4 ([CGLS86]). The spinor bundle S on Mng can be trivialized by Killing 

spinors to the Killing n u m b e r / z  c C, where #2 _ 1 K. 

Proo f  Let # c C be a complex number with/z  2 = ¼ K and let denote V u the covariant 

derivative 

V~c :=  vS  - # X  

on S. A Killing spinor to the Killing number/z is parallel with respect to V ~'. Since M~ is 

simply connected it is enough to prove that the curvature F u of  V u vanishes on the bundle 

S. Now, it is easy to check that 

u tz u u _ V ~ = F S ( x ,  Y)  + # 2 ( X  • Y - Y - X). (2) F ~ ( X '  Y) = V x V y  -- V Y V X  IX, YI 

The curvature F s of the spinor derivative V s is given by 

l Z e i e j T ~ ( X ,  Y, si,3~] )si . s j . ,  F S ( x ,  Y)  -= -~ .. 

tJ 

where 7~ denotes the curvature tensor of  the basis manifold and (sl . . . . .  s ,)  is a local 

orthonormal basis. The curvature tensor of a manifold of constant sectional curvature K is 

given by 

g ( X ,  Y, V, W)  = K { g ( X ,  W ) g ( Y ,  V) - g ( X ,  V ) g ( Y ,  W)}. 

Hence on M~c we have, for the curvature of  the spinor derivative, 

F S ( x ,  Y)  =- 1 K ( r  . X - X . Y).  

S i n c e / 2  2 = 1 K from (2) it follows that F tz = 0 on S. [] 

Helgason [He194, Chap. 5.5.4] and Schimming and Schlichtkrull [SS94] proved the 

following theorem for the Laplace operator of  a Lorentzian space form. 

Theorem 5. Let ( M  n , g)  be a Lorentzian manifold o f  constant sectional curvature K and 

even dimension n >_ 4. Then f o r  each m = 3, 5 . . . . .  n - 1 the shifted Laplace operator 

Lm : =  AO -Jr- K (n - m ) ( m  -- 1) 

is o f  Huygens type. 
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This can be used to prove the following theorem. 

Theorem 6. Let ( M n , g) be a Lorentzian spin manifold o f  constant sectional curvature K 

and even dimension n > 4 and denote by D the Dirac operator o f  (M n, g). Let tx ~ C be 

a complex number with Ix2 = I K .  Then for  each m = 3, 5 . . . . .  n - 1 the operators 

Pro,- :=  (O - Ix)2 _ I K { ( n  _ 1)2 _ 4(n - m)(m - 1)} 

and 

Pro,+ : =  (D + 11,) 2 - ¼K{(n - l )  2 - 4(n - m)(m - 1)} 

are o f  Huygens type. 

Proof  Let ~. ~ C be a complex number. The Weitzenb6ck formula of  (D + £)2 is 

(D + ~,)2 = A L + ~n(n -- 1)K + (1 - n))~ 2, (3) 

where A x is the Bochner-Laplace operator of  the covariant derivative V x defined by VZx :=  
V s - ~X, 

n 

A~ = -- Z ~i(V~'v~" si si ÷ div(si)V~). 
i = 1  

For a function f c C ~ ( M )  and a spinor field ~ ~ F ( S )  we have 

x (4) AX(flp) = A 0 ( f )  ~ + fAXlp - 2Vgrad( f )  ~ .  

Hence, if q9 is a Killing spinor to the Killing number IX wi th /2 ,2  = ¼ K ,  then from (3) and 

(4) it follows that 

(D ÷ Ix)2(ftp) = A 0 ( f )  ~ ÷ I K ( n  -- 1)2fqg. (5) 

Since the Huygens property is a local one, it is enough to prove the theorem for the simply 

connected manifold M E. According to Proposition 4 there exists a basis of  Killing spinors 

~1 . . . . .  ~0N to the Killing number IX in the spinor bundle S of  M E. Hence the space of  spinor 
fields F ( M ~ ,  S) on M~¢ can be identified with that of  smooth functions C ~ ( M ~ ,  C N) 

N by assigning to each spinor field ~o = Y~-e=l fe~oe the function (fl  . . . . .  fN) .  Using this 
identification according to (5) the operator (D + IX)2 corresponds to the operator A0 + 

K / 4 ( n  - 1) 2. Then from Theorem 5 it follows that for each m = 3, 5 . . . . .  n - 1 the 

operator 

Pro,+ = (D + IX)2 _ 1K{(n  _ 1)2 _ 4(n - m)(m - 1)} 

acting on F ( M ~ ,  S) is of  Huygens type. If  we trivialize the spinor bundle of M~¢ using 
Killing spinors to the Killing number -IX we obtain in the same manner the result for the 
o p e r a t o r  P m , -  = (D - -  IX)2 _ ¼K{(n - 1) 2 - 4(n -- m)(m -- 1)}. [] 
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Now, we are able to prove the above-mentioned result. 

51 

Theorem 7. Let (M n , g) be a Lorentzian .win manifold of  constant sectional curvature K 

and even dimension n > 4 and let us denote by D the Dirac operator o f  (M n, g). Then the 

operator D 2 - K : F ( S )  ~ F ( S )  is o f  Huygens type. 

Proof If K is zero, the theorem follows from Theorem 6. Hence we assume that K ~ 0. Let 

# be a complex number with #2 = ¼ K and let m = 2[¼n] + 1. According to Theorem 6 the 
operators Pm,- = (D - #)2 _/z2 = (D - 2/z)D and Pm, + = (D + #)2 _/z2 = (D + 21z) D 

are Huygens operators. (In the simply connected case, these operators correspond to the 

Yamabe operator acting on C ~ (M~(, cN) ,  if we trivialize the spinor bundle S using Killing 

spinors to the Killing number # and - # ,  respectively). Since (D - 2 # ) D  and (D + 2 # ) D  

are of Huygens type, there exists a covering/g by causal domains such that for all I21) c gt 

and x ¢ S?0 the forward and backward fundamental solutions G~,~(x) and G ~ ( x )  of 

(D - 2 # ) D  and (D + 2# )D ,  respectively, are supported in the light cone C ~  ° (x). Consider 

the distributions H l ~ ( x )  :=  D G l , ± ( x )  and H~°,(x)  :=  DG2,±(x) .  Then 

(D + 2/z)(D - 2#)H~°, (x) = (D + 2#)6x ---- D6x + 2tZ3x, 

(D - 2 # ) ( D  + 2#)H~°, (x) = (D - 2/Z)~x = D~x - 21z6x. 

Hence 

( D 2 - 4 t z 2 ) ( + [ H l ~ , ° , ( x ' - H ~ ° , ( x ) ] )  = ' x .  

Therefore, the distribution eg°(x) • (s?0, s*: sx) defined by 

E g 0 ( x )  : =  (x )  - 

is the forward resp. backward fundamental solution of  the operator D 2 - K with respect to 

(X-20, x). Since 

supp E~°(x )  C supp H,?°,(x) U supp H~°,(x)  

C supp G~°~ (x )U supp G~°~ (x) 

C C~  ° (x), 

D 2 - K is a Huygens operator. D 

4. The Dirac operator on plane wave manifolds 

Already for a long time it has been known that the Laplace-Beltrami operator on a 

plane wave manifold of  even dimension n > 4 and the Hodge-Laplace operators on 

forms of  a plane wave manifold of  even dimension n >_ 6 are of Huygens type (see 
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[Giin65,Sch71,Giin88]). In this section we prove that the square of  the Dirac operator 

on plane wave spin manifolds of  even dimension n _> 4 is a Huygens operator. 

Defini t ion 7. A Lorentzian manifold (M n, g) is called a plane wave manifold if the fol- 

lowing conditions are satisfied: 

1. There exists an isotropic parallel vector field T on M. 

2. For the curvature tensor R of  (M, g) 

trace(3,5),(4,6)T~ ® T~ = 0 

holds, where traceci,j)B denotes the trace of  the tensor field B in the ith and j t h  com- 

ponent with respect to g. 

3. ~ is quasi recurrent with T, i.e. there exists a (4,0)-tensor field R I  such that 

V ~  = T b ® ~ l ,  

where T b denotes the 1-form dual to T with respect to g. 

A plane wave manifold is foliated by submanifolds of  codimension 1, the integral curves 

of  T are isotropic geodesics running in the leaves of  the foliation and M is locally symmetric 

along the leaves: V x R  ---- 0 for all vectors X tangent to the leaves of  the foliation. The scalar 

curvature of  a plane wave manifold is zero. 

The geometry of  plane wave manifolds was studied by Schimming in |Sch74]. 

T h e o r e m  8 ([Sch74]). A Lorentzian manifold (M n, g) is a plane wave manifold with the 

isotropic parallel vector field T if and only if for each point x E M there exists a coordinate 
neighbourhood (U, (x I . . . . .  xn) ) such that the metric g has the form 

g lu=2dxldx2Wac~(x l )dxC~dx/~ ,  3 < c t , ~ < n ,  

where (aa#) is a positive definite matrix, depending only on x ! and the vector field T is 
given by Ttu = O/Ox 2. 

4.1. Some geometry of standard plane wave manifolds 

In this section we consider the following "standard" plane wave manifold (M, g):  Let 

M :=  I x ~ n - l  be the product of  an open interval I with the R n-1 and g be the Lorentzian 

metric 

g = 2dXl dx2 + d'xA(xl)d'x t, 

where x = (Xl  . . . . .  Xn) e M , ~  = (x3 . . . . .  Xn) and A ( x I ) d e n o t e s  a positive definite 

(n - 2) x (n - 2)-matrix, depending smoothly on Xl. Then T :=  O/ax2 is the isotropic, 

parallel  vector field occurring in the definition of  a plane wave manifold. We will explain 

some geometric properties of  standard plane wave manifolds which we need to calculate 

the Hadamard coefficients of  the square of  the Dirac operator. 
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With small letters i, j ,  k, l . . . .  we will denote indices running from 1 . . . . .  n. With capital 

letters I ,  J ,  K, L . . . .  we will denote indices running from 3 . . . . .  n. (01 . . . . .  On) is the 

canonical basis with respect to the coordinates (xl . . . . .  xn). 

We will use the following denotations: 

Defini t ion 8. Let A be the matrix occurring in the definition of the metric g. Then V and 

W are the symmetric matrices: 

l 

V(ql ,q2)  : = / A - l ( q ,  + t ( q 2 -  q l ) )  dr, W(ql ,q2 )  :=  (V(q l ,q2 ) )  -1. 

0 

By a simple calculation it follows: 

L e m m a  1. The only non-vanishing Christoffel symbols o f  (M, g) with respect to the co- 

ordinates (Xl . . . . .  Xn) are 

FI~=FIKll = ½ ( A - I / t ) X l ,  I , K = 3  . . . . .  n, 

F 2 j = - ½ A , j ,  l , J , = 3  . . . . .  n, 

where ,4 denotes the derivative o f  A with respect to Xl. 

The geodesics of the standard plane wave manifold (M, g) are described in the following 

proposition. 

Propos i t ion  5. 

(YI,)/2, Y') : [0, l] ) M joining y with z. 

This geodesic is given by 

y j (s )  = Yl + (zl - y l )s ,  
S 

Y2 + (z2 -- y2)s + 
2(Zl - Yl) 

y2(s) = if zl # Yl, 

Y2 + (z2 - y2)s + 4( s  2 -- s ) (~- -  ~ A ( y l ) C £  - y-3 t 

~(S) '  = y t  " ~ - s V f s ) W ( ' z - -  y ) t ,  

where V (s) and W are the matrices 

V(s)  :=  V(yl ,  yl(S)) ,  W :=  W(yl ,  zl) .  

In particular, M is a geodesically normal domain. 

Let y, z be two points o f  M. Then there is exactly one geodesic y = 

C -  Y)Iw - W V ( s ) W l ~ -  "~)' 

i f z l  = Yl, 

Proof  Let 3 (s) = (31 (s), 32 (s), 6"(s)) be the geodesic with 3 (0) = y = (Y I, Y2, ~), 3' (0) = 
v = (vl ,  v2, v-']. Using Lemma 1, the geodesic equations 

+ E = 0  
ij 
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~'l'(S) = 0, (6) 

6'2~ (s) = l'~r (s)A(S1 (s) )~' (s) t, (7) 

"~" (S )  t = --(~t 1 (s)A -1 (81 (s))A(31 (s) )6' (s) t. (8) 

Hence, 

81 (S) = Yl q- I)IS- (9) 

Let .A(s) :=  A(31 (s)). Using .A'(s) = A(61 (s))8~l (s) we obtain from (8) 

A(s )~" ( s ) '  + A ' ( s ) ' g ' ( s /  = (A~") ' ( s )  = O. 

From the initial data it follows 

"~(s)t= ( i . A - ' ( t ) d t )  A(yl)'~: + '~ t=  l)(s)A(yl)'~ts +'~', (10) 

where V(s) :=  V(yl,  8l(s)). 

Now, let Vl ¢ 0. Then (7) and (10) yield 

6;~ (s) = - --~1 ~'A (y~) (.A- I ), (s) A (Yl)~" t. 
2Vl 

Hence, 

s 
~2(S) ~--- Y2 + v2s + ~Vl v'[A(yl) -- A(yl)V(s)A(yl)]'v t (11) 

In case Vl = 0, from 8[(s) = yi it follow .A(s) - A(yl)  and V(s) -= A-l(yl). Therefore, 

(10) gives 

~(s) = ~" + ~s 

and (7) results 

~2(S)  = Y2 + v2 S -t- l ' f f A ( y l ) ' v t s 2 .  (12) 

Now, let ~, : [0, 1] ) M be a geodesic in M joining y with z and let v ~ TyM be 
the vector v = yt(0). Then with )/(s) = 8(s) formulas (9)-(12) show that v is uniquely 

determined by z = ~ (1). We obtain 

vl = zl - yl,  (13) 

I 1 (~-  ~[WA-I(y l )W - W ] ( ' ~ -  ~)t  if Zl • Yl, 
z2 - Y2 2(Zl - Yl) (14) 

V2 = 1 
Z2 -- Y2 -- ~ ( ~ -  ~ ' ) A ( y l ) ( ? ' -  ~')t if zl = Yl, 

.~t = A-I(yl)W('~_ ~-)t, (15) 

Inserting this in (9)-(12) the proposition is proved. [] 
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Now, we can calcula te  the quadrat ic  geodes ic  d is tance  funct ion and the d ivergence  mea-  

sure of (M, g): 

P r o p o s i t i o n  6. The quadratic geodesic distance function ~r : M × M > ~ o f  the standard 

plane wave manifold (M,  g) is given by 

or(y, z) = 2(Zl - Yl)(Z2 - Y2) + ( ~ . -  "~ )W(y l ,  Zl ) ( ~ " -  ~ ) t .  

Proof L e t y  :[0,  1] ~ M be the geodesic joining y with z and let v = y ' ( 0 ) .  By definit ion 

or(y, z) = g(y ' ( s ) ,  y ' ( s ) )  = g ( y ' ( 0 ) ,  y ' ( 0 ) )  = 2vl v2 + ~ A ( y l ) ~  t. 

Insert ing (13)- (15)  and regard W ( y j ,  Yl) = A (Yl)  we obtain the assertion. [] 

P r o p o s i t i o n  7. The divergence measure o f  the standard plane wave manifold (M n , g) is 

given by 

m(y ,  z) = - ( Z l  - Yl) ( I n  wylV/.~J~' (Zl),  

where Wy I (Zl) : =  w(y l ,  Zl) : =  d e t [ W ( y l ,  z l ) ] ,  a ( z l )  :~- de t [A(z l ) ] .  

Proof Let  ~r~,(z) : =  or(y, z) and Wv~ (z l )  = W ( y l ,  z l ) .  By definit ion the d ivergence  mea-  

sure m(y ,  z) is 

m(y ,  .) = --1A(~ry) -- n. 

An easy  ca lcula t ion  shows that the Laplac ian  A of a function u E C ~ ( M )  is 

02U 02U ~ i OU 
AU(X) = --2 (X) -- a ( x l ) l J - - ( x )  -- (In ~/a) (Xl) ~----(x) 

OXlOX2 OXlOXj OX2 

where  (A lJ (Xl)) denote  the e lements  of  the inverse matr ix  A - l ( x l  ). Using Proposi t ion 6 

we obtain 

A(cry)(Z) = --4 -- 2 trace (A - 1 W v l ) ( Z l )  -- 2(zl  -- y l ) ( l n  v /a) ' (zL) .  

Since trace(W~7~ 1Wvl ) = n - 2 we can deduce  

m(y ,  z) = trace [(A -1 - W~Sll)wvl](Zl) + (Zl - y l ) ( l n  v / a ) ' (Z l ) .  

F rom 

1 

W - I ( y l ,  Zl) =fA-'(y, + t ( z l  - Y l ) )  dt  

0 

it fol lows 

A - l ( z l )  -- W ~ l ( Z l )  = (W~7~ l ) ' ( Z l ) ( Z l  -- Vl). 
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Hence, 

m(y, z) = (zl - Yl) traee[(W~l)'Wy~](zl) + (Zl - yl)( ln x/a) '(Zl).  

For a symmetric positive definite matrix U (t) 

(In det(U)) '  = trace [U -1U']  ---- - t r ace  [(U -1) 'U]  

holds. Therefore (16) gives 

m(y, z) = - (Z l  - yl)  (In ( wyl ~ !  i k ~ , ] ,  ] (Zl)- 

Let r ~ C°C(M x M) be the function 

{/ ] 1 m(y, F(s)) ds 
r ( y , z )  := exp ~ s 

0 

(16) 

[] 

where F : [0, 1 ] > M denotes the unique geodesic joining y with z. 

Proposition 8. The function r is given by 

~a(yl)a(zl) 
r (y ,  z) - 

w,/-~-~, zl) 

Proof. From Proposition 5 we know 

yl(S) = Yl -k- (Zl -- yl)S. 

Using Proposition 7 we obtain 

re(y, F(s))  = - (Z l  - yl)s In ~ /  (Fl(s)) = - S ~ s  In ~-(:Fl-~s)) ' 

It follows 

W(yl , Z l ) ]  r ( y , z ) = e x p { l [ l n  w(yl'yl)a,4ra_ ~ In ~/-h--~ / }" 

Since w(yl ,  Yl) = a(yl) this gives 

{ l ~/a(zl)a(yl) } ~/a(zl)a(yl) [] 
z(y,  z) = exp ~ In W-~l~-~l) -- v / -~y l ,  zl)  

We now determine the parallel displacement of the canonical basis vectors (Or (y) . . . . .  
On (y)) along geodesics starting from a fixed point y e M. 

Proposition 9. Let y and z be two points in M with yl ~ Zl. Let us denote by b E N n-2 
the vector 

1 
lb .-- - - ( ' ~ - -  y ' )W(yl ,  Zl) 

Zl -- Yl 
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and by P = P(x l  ) the matrix given by the initial value problem 

P = - ½ P A A  l, P ( Y l ) =  E. 

Then the parallel displacement p : T~ M ~ T z M along the geodesic joining y with z 

satisfies 

t~(01(y)) = 01(z) + ½ b [ A - l ( y l ) ( 2 P ( z l )  - E) - A-I(z l )]btO2(z)  

+ ( O [ A  I ( Z l ) - - A - I ( y l ) P ( z l ) ] ) K O K ( Z ) ,  (17) 

I.~(02 (y)) ----- 02(z), (18) 

t~(OL(Y)) = PLK(Zl)OK(Z) + ((E - P(Zl))L~t)LO2(Z), L = 3 . . . . .  n. (19) 

Proof Let ~' be the geodesic joining y with z and let X( t )  = aj (t)Oj (?' (t)) be a vector field 
parallel along y. Denote ,,4(0 := A(?'l (t)) and W = W(y l ,  zl ). If we insert the results of 

Lemma 1 and Proposition 5 into the equation 

i a~(t) + yk(t)aj( t)yi . j ( t )  = O, i = 1 . . . . .  n 
j,k 

for the parallel displacement, we obtain 

a ' l ( t )=O,  a'2(t) = I [~ (A- IA ' ) ( t ) ' d ' ( t ) ,  

~"' (t) = - ½  {(,A-IA'~" t)(t)  - al ( t ) (A- l ) ' ( t ) t , r} ,  

where ~'(t) = (a3(t) . . . . .  an(t)). Since 02 = T is the isotropic parallel vector field on the 
standard plane wave manifold, (18) holds. 

Now, let X( t )  = aLj( t )Oj(g( t ) )  be the parallel displacement of  OL(y). Then the initial 
condition yields aL 1 (t) = 0. Therefore 

~'~(t) = -½ ,A- I ,A ' a ' / ( t ) ,  aLK(O) -=- 6LK. 

This is solved by aLK (t) := PLK 0/1 (t)). For aLz(t) it follows aLz(t) ---- -- (t~, 27~ (t)} and 
the initial condition gives aLz(t) = bE -- (b, a'L (t)). This proves (19). 

Now, let X( t )  = alj(t)Oj (?'(t)) be the parallel displacement of 01 (y). Then aj l ( t )  = 1. 

Therefore 

~']'(t) = -~,AI -l,,4,~tal (t) + / ( .A-l) ' I , t ,  a l (0)  --- 0. 

This initial value problem is solved by the vector 

~l ( t )  = t~[A - j  ( t )  - A - l  (Yl )P(gl  (t))].  

For al2 it follows 

a'12(t) = --a"l ( t ) .  b t +  ½b(,A-l) ' ( t )b  t 

and the initial condition gives 

a l 2 ( t ) =  ½b[ - ,d  l ( t ) + A  l ( y l ) ( 2 P ( y l ( t ) ) - E ) ] b  r. 

This proves (17). EJ 
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4.2. The Dirac operator o f  a standard plane wave manifold 

In this section (M, g) denotes a standard plane wave manifold as it was defined in 

Section 4.1. Since M is parallelizable, (M, g) is an oriented Lorentzian manifold with 

a unique (trivial) spinor structure Q. By S we denote the associated spinor bundle S = 

Q XSpin(n,l) Zln,1. 
Let y be a fixed point in M. We choose a (n - 2) × (n - 2)-matrix C such that C A (Yl) C t ---- 

E. Then 

1 1 
sl(y)  :=  ~--/~(01 (y) -- 02(y)), s2(y) :=  ~-/~(01 (y) + 02(y)), 

sI(y)  : :  CIJOJ(y), I = 3 . . . . .  n 

is an orthonormal basis in TyM. We denote by s = (si . . . . .  sn) the global orthonormal 

basis on M arising from (sl (y) . . . . .  sn (y)) by parallel displacement along geodesics. Let 

the orientation of  M be fixed by this basis s. g denotes a lift of  s in the spinor structure Q. 

P r o p o s i t i o n  10. Let vl . . . . .  VN be a basis in the spinor module An,1 and let us denote by 

til . . . . .  tiN E F ( S )  the basis sections in the spinor bundle defined by 

tie(x) :---- [g(x), re], e : 1 . . . . .  N = 2 In/2]. 

Then over the open submanifoM {x E Mlx l  # Yl } the spinor derivative of  oe is given by 

1 
E wls(Ol)s l  • sg • tie, (20) 1 E O g l l ( O l ) T . s t . t i s + _ ~ l <  J vs'tie = ~ i 

voS2 tie = 0, (21) 

1 
Z W l l ( O K ) T . s # . t i s ,  K = 3  . . . . .  n, (22) VLti~ = ~ I 

where o)ij = g (Vsi , s j )  are the connection forms o f  the Levi-Civita connection with respect 

to the basis (Sl . . . . .  Sn). The connection coefficients o911 (OK) and col j (31) depend only on 
the first variable X l. 

Proof  The spinor derivative of 0e is given by 

1 
v S  tie = "~ E EiEjdOij(X) . ' Sj . t ie .  

i<j  

Hence we have to calculate oJij. 

Using Proposition 9 we obtain over {x ~ Mlx l  # Yi } 

1 
Sl = ~ [ 3 1  + ( l b [ A - I ( y l ) ( 2 P  - E) - A - l ] b  t - 1)02 

+ (b[A -1 _ A - I ( y l ) P ] ) K 3 K ] ,  

, [ ( ,  1 ) s2 = ~ 01 + ~b[A (y l ) (2P  - E) - A-~lf f  + 1 02 

(23) 

(24) 

(25) 
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+ ( b [ A  l _ A - l ( y l ) P ] ) K 0 g ] ,  

st = (CP)tKOK + (C(E - P)~t)t02, (26) 

where  ~(x)  is the vector  

1 
t~(x) - -  - -  (~" - 7 ) W ( y l ,  x l )  

xl  - Yl 

and P = P(x l )  is the matr ix  given by 

15 = - ½ P A A  - l ,  P(Yl)  = E. 

Since by L e m m a  I /"2{. = 0 for  all i, j = i . . . . .  n and the coefficients of  si with respect  to 

(0j . . . . .  0,,) do not  depend  on the second variable,  it fo l lows 

O)ij(02) ~- O, i, j = 1 . . . . .  n. (27) 

This  proves  (21). Because  o f s2  = x/r202 + Sl and F/~. = 0 it is 

wl2(0k) = x /2g(Vaks t ,  02) = 0. (28) 

Fur thermore ,  since T = 02 is paral lel ,  one obtains  

4o21 - ¢Oll = g ( 7 ( s 2  - Sl) ,  st) = x / '2g(702,  st) -= O. (29) 

Insert ing (28) and (29) in (23) gives 

1 1 
VSxrlF - ~ Z C ° l l ( X ) T  " sI " Oe + ~ Z w t j ( X ) s l  " sj  " rle. (30) 

l < J  

Now, a direct  ca lcula t ion  using L e m m a  1 and (24) - (26)  shows that 

1 
tOll(Ol) = - - ~ [ ( C P A R t ) I  + ½(cPAR')~I, 

O)lJ(Ol) = ( C P A p t c  t + ½ C P A p t c t ) I j ,  

~/21 [~ ( C P A ) I K  1 ] O)I I (OK)=-- -~_  -1- . . ( C P [ E -  A p t A  I ( y l ) ] W ) I K  , 
Xl -- Yl 

09IJ(OK) = 0 ,  

where  R = R(x)  is the vector  R = b[A - l  - A - l ( y l ) P ]  and R denotes  the derivat ive 

with respect  to x l .  Hence  with (30) this proves (20) and (22). The connect ion  coefficients 

O)l j  (01 ) and oJj t (OK) depend  only  on the first var iable  x I . [B 

P r o p o s i t i o n  11. On the open submanifold {x ~ MIxl ~ Yl } the Dirac operator sati,~[ies 

Z f l J T  • Sl " s j  • ~e q- f T  • DOle) 
l < J  

where f ig  and f are functions depending only on xl. 
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P r o o f  Since V~2r/E = 0 i t i s  vSr/e = vs0E.  Hence 

= vs  + 
siT"/* = (S 2 - - S 1 )  • 

i 1 

= T .  (Vo, ~ + (~[a -1 - a -1 (yl)PI)K vS~ ~ )  + y - ~ . ( c e ) t K s l ,  vsK ~,. 
1K 

Using T • T = - g ( T ,  T) = 0 for the isotropic vector field T Proposition 10 gives 

1 1 g-" 
y ~  ( C P ) I K W l J ( O K ) T  • S l  " s j  • ~e.  D ( n , )  = ~ z . . ,  a ~ H ( a l ) 7 "  . s l  • s a  • ~ 

l < J  1 J K  

Since P, w / j  (01) and (.01 j (O K )  depend only on x l, this proves the proposition. [] 

Proposi t ion 12. Let  h c C ° ° ( M )  be a func t ion  depending only on Xl. Then 

DZ(hoe)  = O, e = 1 . . . . .  N .  

P r o o f  Since all sections and functions are continuous it is enough to prove the assertion 

on the open submanifold {x 6 Mix1 5 ~ Yl}. 

For the Dirac operator of  a Lorentzian spin manifold the following commutation rules 

are valid 

O ( f  ~o) = f D~o + grad f .  ¢p, 

D ( X .  ~o) = - X .  Dq9 - 2VSx~o + ~ - ~ E i s i  • V s i X  "~0, 
i 

(31) 

(32) 

where f is a function, X is a vector field and ~o is a spinor field. If  h is a function on the 

standard plane wave manifold depending only on xl then grad h = [TT. Hence from (31) it 
follows 

D(hrTe) = h T  • qe + hD~?~. 

Since st • s j  • r/e = A[IJ]e~r]6 , where A[IJ]e ~ are constant functions given by the matrix 

representation of the linear map et • e j .  on the spinor modul A ,  j with respect to the basis 

(Vl . . . . .  VN), Proposition 11 results that D(hoe )  can be expressed in the form 

D(hrle) = he~T " Oa, 

where/~ea are functions depending only on Xl. Hence 

D2(hoe)  = he~T • T . ~16 + h e ~ D ( T  • 06). 

Since T is parallel and vrsr/E = 0, from (32) it follows D ( T  • ~o) = - T  • D~o. Using 

T • T = - g ( T ,  T) = 0 this gives under consideration of  Proposition 11 

D2(hrle) = - h e 6 T  • Drl6 = O. [] 

Theorem 9. The Hadamard  coefficients Uk E F ( M × M,  S* [] S) o f  the square o f  the Dirac  

operator on a standard plane wave  manifold vanish f o r  all k > 1. 
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Proof  From Proposition 3 it is known that the Hadamard coefficient U0 satisfies 

1 
Uo(y, z) - - -  79(y, z), 

r (y ,  z) 

where r is the function described in Proposition 8 and 79(y, z) is the parallel displacement 
from Ty M to ~ M along the geodesic joining y with z. 

Since the basis (Sl . . . . .  sn) is parallel along geodesics starting from y, the sections rh = 
[J, v~] in the spinor bundle are also parallel along these geodesics. Therefore, the parallel 
displacement 79(y, z) can be expressed by 

z) ~ * ) 79(3 ' , = o~ (y ® ~(z ) .  

According to Proposition 8 the function r (y ,  .) depends only on the first variable. Using 

Proposition 12 we obtain 

D2(Uo(y, .)) = O. 

Then Proposition 3 shows that U1 ---- 0. Hence all Hadamard coefficients Uk for k >_ 1 
vanish. [] 

To be of Huygens type is a local property of an operator. Therefore, we obtain under 

consideration of Proposition 8 from the Hadamard criterion: 

Theorem 10. Let (M n, g) be a plane wave spin manifold o f  even dimension n > 4. Then 

the square o f  the Dirac operator is o f  Huygens type. 

5. The Huygens property for twisted Dirac operators on four-dimensional 
Lorentzian spin manifolds 

In this section we consider the Huygens property for twisted Dirac operators. Let (M", g) 

be a Lorentzian spin manifold with spinor bundle S. Furthermore, let P be a G-principal 
bundle over M, p : G > G L ( V )  a complex representation of G and E = P xp V the 

associated complex vector bundle. Each connection A of P induces a Dirac operator 

D A  : F ( S  @ E) > F ( S  ® E) 

with values in E defined by 

n 

O A = O ® 1 + ~ 6i si " ®V A, (33) 
i = 1  

where D is the Dirac operator, V a is the covariant derivative on E given by A,. is the Clifford 
multiplication and (sl . . . . .  Sn) is a local orthonormal basis on (M, g). The Weitzenb6ck 
formula for D2A is given by 

D2A = AV + 1R + Oa,  (34) 
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where R is the scalar curvature of  ( M  n, g), 

V = v s ®  1 + 1 ® V  A 

and 
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QA = E eigjsi • sj • ® F  A (si, s j ) ,  F A curvature of  V A 

i<j 

(see [LM89, p.164]). In even dimension n the spinor bundle S splits into the sum S = 

S+@S-ofpositiveandnegativespinors.Letusdenoteby D:~ : F ( S ± ® E )  ~ F(Sm®E)  
the restrictions of  DA tO the corresponding subbundles. Then 

(OAOA+ 0 ) 
0 D+DA " F  S - ® E  , F ( S + ® E  S - ® E ) .  

We first prove the following proposition. 

Proposi t ion 13. Let (M n, g) be a space and time oriented Lorentzian spin manifoM of 
even dimension n ---- 2m > 4. Then the operator DA D+ : F ( S + ® E) ~ F ( S + ® E) 

i so fHuygens type i fandonly i f theoperatorD+DA : F ( S -  ® E )  > F ( S -  ® E )  i so f  
Huygens type. 

Proof In [Bau94] it was proved that on the spinor bundle S = S + @ S -  of  an even- 

dimensional space and time oriented Lorentzian spin manifold there exists an ant±unitary 

map C : S + > S m such that 

DC = - C D ,  (35) 

XC = - C X  for all vector fields X, (36) 

C 2 ---- ( - l )a(n) Id ,  where or(n) = (m(m + 1)/2) + 1. (37) 

If  we extend C to S ® E by C(~b ® e) = Cq~ ® e, from (35)-(37) it follows 

D+DA = (-1)c~(n)C+DAD+C - .  (38) 

Now, let 120 be a causal domain and x E 120. Let G+(x) and G_(x) be the forward and 

backward fundamental solutions of  D + D A with respect to (120, x). We denote by H+ (x) E 

D~, (120, (S + ® E)*; (S + ® E)x*) the following distribution: 

(H i (x ) ,  ~)  :=  (-1)~(n)(C+)*(G-L(x), ( C - ) * ~ ) ,  @ E f'o((S + ® E)*), 

where (C±) * denotes the maps induced by C :L on the dual bundles. Using (37) and (38) it 

is easy to check that H±(x) is the fundamental solution of  DA D+ with respect to (120, x) 
and that the support of  H i  (x) coincides with that of  G± (x). Hence the operator D + D a is 
Huygens if and only if D a D + is Huygens. O 

Now, we consider the Huygens property for the square D 2 of  the twisted Dirac operator 
on a four-dimensional Lorentzian spin manifold. In case of  U ( 1)-connections the following 
statement was proved by Illge ([11188]). 
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T h e o r e m  11. Let (M 4, g) be a space and time oriented analytic Lorentzian spin manifold 

o f  dimension 4, let f be a smooth function on M and DA : F ( S  ® E) ~ F ( S  ® E) be 

the Dirac operator coupled to a connection A of  a complex vector bundle E. Let us denote 

by P ( A ) one o f  the operators D 2, D + D A or DA D +. l f  P ( a ) - f is o f  Huygens type, then 

the scalar curvature R o f ( M ,  g) is constant and equals 12f.  
I f  R is constant and non-zero, then P ( A )  - I R is o f  Huygens type if and only i f  the 

connection A is flat and (M 4, g) is o f  constant sectional curvature. 

I f  R = O, then P ( A ) is o f  Huygens type if  and only if A is flat and (M 4, g) is conformally 

flat or locally isometric to a plane wave manifold. 

Proof. According to Proposition 13 it is enough to consider the case P ( A )  = D2A . Suppose 

that the operator P ( A )  - f is of Huygens type. According to Theorem 4 this implies that 
its Cotton invariant C vanishes. From the Weitzenb6ck formula (34) of  D2A we obtain for 

the Cotton invariant C = ~ R  - f + QA. Hence we have the condition 

Oa ---- y ~  6i£j si . sj • @Fa(si, sj) = ( f  - I R)Ids®E. (39) 
i<j 

For the calculations we identify the complexified Clifford algebra CliffCl of  the Minkowski 

space with the algebra of  complex 4 x 4-matrices using the map q~ given by 

q~(el) = iE ® U, q~(e2) = E ® V, q~(e3) = U ® T, qS(e4) = V ® T, 

where (el . . . . .  e4) denotes the canonical basis of  the Minkowski space and 

('0) (0)  ( i  0 0 )  V = ( 0  i0)  E =  0 T =  - i  
U =  - i  ' i ' 1 ' 0 ' 

Let u(e) := (_leg), e = +1,  and u(el ,  e2) :=  u(el)  ® u(e2). Let us denote by ,~ a lift 

of  the local orthonormal frame s = (Sl . . . . .  s4) into the spinor structure and rt(el, e2) 

:= [g, u(el ,  e2)] the corresponding local sections in the spinor bundle S. Then (0(1, 1), 
I / ( -  1, - 1 )) is a local basis in S + and (r/( 1, - 1), rl ( -  1, 1 )) is a local basis in S - .  If we use 

this basis, the homomorphism Q~ is given by 

Q~ ( ~ r , )  = ( (tF12q-iF34)O1 nL(-4-iF13TF14-iF23-}-F24)02 ) 
~2 (T i F13  + ={=F14 - iF23 - F24)~1 + ( T F I 2  - i f34)~t2 ' 

where Fij = FA(si, sj). This shows that Q+ is a multiple of  the identity if and only if 
F A = i * F A and QA is a multiple of  the identity if and only if F A = - i  • F A. Here 

• is the Hodge operator of  the Lorentzian metric. Hence condition (39) implies that A is 
flat: F A = 0. Since the Huygens property is a local one we can assume that M is simply 
connected. Then, because of the flatness of  A, there exists a global trivialization of E by 
V A- parallel sections. Using this trivialization the bundle S ® E can be identified with the 
sum (S @ • • • (9 S) of  the spinor bundle such that the Dirac operator DA acts on each factor 
S as the uncoupled Dirac operator D (see (33)). Hence P ( A )  - f is Huygens if and only if 
A is flat and the uncoupled shifted Dirac operator D 2 - f is Huygens. Then the assertion 
follows from the theorem of Wtinsch (Theorem 1 ). [] 
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